Data mining is used wherever there is digital data available today. Notable examples of data mining can be found throughout business, medicine, science, and surveillance.
In the 1960s, statisticians and economists used terms like data fishing or data dredging to refer to what they considered the bad practice of analyzing data without an a-priori hypothesis. The term "data mining" was used in a similarly critical way by economist Michael Lovell in an article published in the Review of Economic Studies in 1983. Lovell indicates that the practice "masquerades under a variety of aliases, ranging from "experimentation" (positive) to "fishing" or "snooping" (negative). The term data mining appeared around 1990 in the database community, generally with positive connotations. For a short time in 1980s, a phrase "database mining"™, was used, but since it was trademarked by HNC, a San Diego-based company, to pitch their Database Mining Workstation; researchers consequently turned to data mining . Other terms used include data archaeology , information harvesting , information discovery , knowledge extract...
There have been some efforts to define standards for the data mining process, for example, the 1999 European Cross Industry Standard Process for Data Mining (CRISP-DM 1.0) and the 2004 Java Data Mining standard (JDM 1.0). Development on successors to these processes (CRISP-DM 2.0 and JDM 2.0) was active in 2006 but has stalled since. JDM 2.0 was withdrawn without reaching a final draft. For exchanging the extracted models—in particular for use in predictive analytics—the key standard is the Predictive Model Markup Language (PMML), which is an XML-based language developed by the Data Mining Group (DMG) and supported as exchange format by many data mining applications. As the name suggests, it only covers prediction models, a particular data mining task of high importance to business applications. However, extensions to cover (for example) subspace clustering have been proposed independently of the DMG.
The premier professional body in the field is the Association for Computing Machinery's (ACM) Special Interest Group (SIG) on Knowledge Discovery and Data Mining (SIGKDD). Since 1989, this ACM SIG has hosted an annual international conference and published its proceedings, and since 1999 it has published a biannual academic journal titled "SIGKDD Explorations". Computer science conferences on data mining include: CIKM Conference – ACM Conference on Information and Knowledge Management European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases KDD Conference – ACM SIGKDD Conference on Knowledge Discovery and Data Mining Data mining topics are also present on many data management/database conferences such as the ICDE Conference, SIGMOD Conference and International Conference on Very Large Data Bases
Comments
Post a Comment